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NEWTON'S METHOD AS A DYNAMICAL SYSTEM:

GLOBAL CONVERGENCE AND PREDICTABILITY

INTRODUCTION

When studying physical problems that exhibit chaotic behavior, it is known that unstable periodic

orbits play a significant role in the analysis of the attractor (e.g.,[l,2,31). Physical examples of the

importance of the invariant unstable manifolds arising from unstable periodic orbits can be found in

[4]. However, computing the location of unstable periodic orbits for either differential equations or

maps cannot be successful without constructing a contracting iterative scheme due to the unstable

nature of the orbit. Furthermore, it is even more difficult to use such a contracting scheme to prove

rigorously the existence of an unstable periodic orbit.

.4 One particular scheme that has been successful in computing unstable periodic orbits is that of

Newton's Method (NM). See, for example, References [5,61. Moreover, perturbations of NM have

been used to give computer-assisted proofs of the Feigenbaum conjectures [71, the existence of periodic

orbits of the Lorenz Equations [8,9,10], and the existence of unstable periodic orbits arising from

saddle-node bifurcations in forced oscillators 161. Newton's Method, whether applied to a differential

equation in the form of finding fixed points of a Poincare map, or computing fixed points of a given

discrete map, is itself an iterative procedure. Convergence properties of NM are almost always given in

terms of the proximity of the iterates to the fixed point. That is, if one starts close enough to the fixed

point, then under suitable hypotheses, the Newton iterates converge to the fixed point, where the

number of significant digits doubles with every successive iterate.

Recently, the global behavior of Newton iterations has come under investigation in terms of

dynamical systems and chaos [11,12,13]. In this paper, we consider how NM globally changes the

structure of the basins of attraction for a map, T, which is bistable; i.e., the map has two stable fixed

points, and the basins of attraction are intertwined in a complicated manner. Intuitively, it is expected

that NM destroys the complicated basin structure due to the contracting nature of the iterates. It is not

intuitively obvious that the Newton map will have its own unique and complex basin structure. New-

ton iterates for initial conditions close to a given fixed point are observed to converge to a completely

different fixed point. In fact, initial conditions chosen arbitrarily close to each other are observed to

converge to different fixed points. We show that the structure of the basins of attraction for a Newton

Manuscript approved January 2, 1985.
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map are very complicated. The complex structure of the basins leads to a definition of the predictability

(following [141) of the final state of Newton iterates as a function of precision in initial conditions.

Predictability is given as a scaling law, from which the capacity 115) is estimated.

THE MAP T

We consider the two-dimensional iterates given by y, +I T(y,), where y (0, x), and

f +1 .94 sin 20 - Bsin 40 x sin 40j

The map T is periodic in 0 with period 2,r, and symmetric with respect to reflection about the line

The map T has five fixed points (i.e., those values y* - T(y*)) in the interval 0 < 0 7r,

whose stability characteristics are given in Table 1. The stability of each fixed point is determined by

*0 evaluating the eigenvalues of the Jacobian matrix of T at the fixed point under consideration. The

fixed point is stable if all of the eigenvalues have modulus less than unity, and unstable if at least one

eigenvalue has modulus greater than unity.

Table I - Fixed Points of Map T: Parameter Values:
A = 1.64, J,) 0.3 B - 0.9

Fixed Point Eigenvalues of

(O,x) T'(O,x)

(0,-Jo) X-- 0.98
=0

(O, JO)x 0.98

(0/2,0) ,k, -5.14... X10- 2

_ -5.828...

(3.089...,0.2996...) x,= 1.0399...
= 8.0134... x10 -4

(0.0527. .. ,-0.2996...) .+ -- 1.0399...
- 8.0134- x 10-4
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Figure 1 shows the basins of attraction for the two stable fixed points of T. The black regions i
consist of those initial conditions which, under iterations of T, converge to (r, JO ). The white are ini-

tial conditions which have converged to (0, -JO ). In [14], this map was examined to determine what O

the consequences for prediction are due to the complicated intertwining of the basins of attraction. The

question the authors of [14] asked was, given an initial condition (00, x0 ), do the orbits of

(90, x0 + e) or (00, xo e) also converge to the same fixed point as (00, x0 ), for some uncertainty E?

They found that the fraction of uncertain phase space volume was proportional to E) .2, and concluded ,

the system was very sensitive to small perturbations of the initial conditions. Using the capacity defini-

tion of dimension [15], they estimated the dimension of the basin boundary to be d = 1.8, and con-

cluded that extraordinarily high accuracy of initial conditions may be necessary for reliable prediction of

the eventual final state. We ask about the effect of NM on the map T in regards to final state sensi-

tivity.

NEWTON'S METHOD

In order to solve to solve numerically for the unstable fixed points of T, it is necessary to employ

a contracting map such as NM. Let g(y) = y - T(y). Then the zeros of g are the fixed points (stable

and unstable) of T. Newton's Method is used to find the zeros of g, hence the fixed points of T.

Let N denote the Newton map, defined by

N(y) = y - (g'(y))-1 g(y)

where g'(y) denotes the 2 x 2 matrix of partial derivatives evaluated at y. It is well known [51 that if
an initial point Yo is sufficiently close to a zero of g, then the iterates given by y, + = N(y,) will con-

verge to the that zero, which corresponds to a fixed point of T. This convergence now holds for both

stable and unstable fixed points of T.

Here we determine how sensitive NM is to the basin boundary shown in Fig. 1. By observing the

asymptotic behavior of iterates of ,V for a large set of initial conditions, we determine where the iterates

of initial points not "sufficiently close" to a fixed point converge.

RESULTS

Figure 2 plots the basin of attraction of the fixed point (,r, Jo) for the map .V. The black dots

correspond to initial points whose Newton iterates converge to (r, J,)). Comparison with Fig. I

4 reveals that NM not only destroys the original basin structure (which is to be expected, since unstable S

3
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fixed points of T correspond to stable fixed points of N), but has its own basin structure. The situa-

tion for NM is more complicated in that we are dealing with more than two stable fixed points for V.

Indeed, a small but significant number of initial points get mapped to fixed points outside the current

region of interest, 9 e(O, r).

To examine the structure of the Newton basin in detail, we look at the enlarged region (Figs. 3-5)

enclosed by the rectangle with sides bordering on the unstable fixed point (3.089..., 0.29958...) and the

stable fixed point (ir,0.3 ) in the upper right-hand corner of Fig. 2. In Figs. 3-5, the black dots

correspond to the Newton basins of attraction for the fixed points (3.089..., 0.2996...), (r/2, 0), and

(3.19..., 0.2996...) respectively. Approximately all the remaining initial conditions in the rectangle

comprise the basin for (r, 0.3).

Following [14], the sensitivity of the Newton map to some random f imprecision in the initial

condition was determined. Newton iterates for the initial points (00, x0) , (00 + E,xo), and (00 - E, x0)

were computed, where (O, x)) is an initial point chosen at random. If Newton iterates for at least one

of the perturbed initial points converged to a different fixed point than the unperturbed initial point, -_

then ,9o, x0) was said to be uncertain. One million random initial conditions were chosen, and the

fraction, f, of uncertain initial points was computed. The value of e was varied and the procedure

repeated.

Figure 6 illustrates the scaling of f with E on a log-log plot. Using a linear least squares fit, we

see that the fraction of uncertain points is proportional to 10 .5 8. Thus, the capacity [151 of the Newton
basin boundary is fractal with dimension d = 1.42. The fractal nature of the basin boundary can easily

be seen in Fig. 7, which is an enlargement of the small rectangle at the top of Fig. 5.

CONCLUSIONS

We considered the result of applying a Newton map to a problem which exhibits complicated

basin boundary structure. It was seen that although much of the original basin boundary is destroyed,
the basin boundary structure for the Newton map possesses its own complex structure. The dimension

(capacity) of the Newton basin was estimated to be approximately 1.42, revealing a fracted - like basin

structure. Therefore, although the Newton map has only stable fixed points, global convergence is

affected by the scaling law, f a e', where a < I.

In the simple case of iterative mapping, e has a lower bound dependent only upon machine preci-

sion and roundoff error. But, for maps constructed numerically from differential equations, e will be

4
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bounded by the global truncation error of the particular numerical solver used. In the latter case, there

could exist a significant number of uncertain initial conditions, adversely affecting the outcome of

computer-assisted proofs using Newton iterates.

59

I 9

5i



4.. - . -= i '. '-

4 . -- . -P . -1X

.44

,;a .V .4 *~4*
7 . .,,,' A,.Is

,1'O

r13'. 
4/F

4 4

X V; is A7

*4.It,~ -4%j t

/4.-0 ,J

ro , -

6



"0

I

- * . .o ee o** .4-, i - q ,. 'a - ,

--- J

.9 - •

.LU .

f- 'O

,, 4-*0

.0 .0

).. .1
+ . , , .



S 3

ii4

IL

a



. . . . . . . .

- p

a.,

L

* I
.2 n

.7

0 A-LUg

.. *

z

*1*

' '

I. -e

S 4,
Se,*1

a.,* S
* 2

'S

I I
.5.5, p

I
B~ra 0 a~a

9



(14

100



C3--.. . b

In

II

ol~~* 01.i'0

s~~~~ ~ ~ ~ L~O l25N ONM



A w ' . -

~ ~ L

12



REFERENCES

1. S. Smale, Bull. Amer. Math. Soc. 73 (1967) 747.

2. J. A. Yorke and K. T. Alligood, Bull. Amer. Math. Soc. 9 (1983) 319.

3. T. Short and J. A. Yorke, preprint, Univ. of Maryland (1983)

4. J. Guckenheimer and P. Holmes, (Nonlinear Oscillations, Dynamical Systems and Bifurcations of

Vector Fields), Springer (1983), pp. 66-116.

5. J. Ortega and W. Rheinboldt, (Iterative Solution of Nonlinear Equations in Several Variables),

Academic Press (1970).

6. 1. B. Schwartz, SIAM J. Numer. Anal. 20 (1983) 106.

-. 0. E. Lanford, II1, Bull. Amer. Math. Soc. 6 (1982) 427.

S. E. N. Lorenz. J. Atmos., Sci. 20 (1963) 130.

9. J. G. Sinai, E. B. Vul, J. Stat. Phys. 23 (1980) 27.

10. S. de Gregorio, E. Scoppola, and B. Tirrozzi, J. Stat. Phys. 32 (1983) 25.

11. D. G. Saari and J. B. Urenko, Amer. Math. Monthly 91 (1984) 3.

12 M. Hurley and C. Martin, SIAM J. Math. Anal. 15 (1984) 238.

13. A. Griewank and M. Osborne, SIAM J. Numer. Anal. 20 (1984) 747.

14. C. Grebogi, S. McDonald, E. Ott, and J. A. Yorke, Phys. Letters 99A (1983) 415.

15. J. D. Farmer, E. Ott, and J. A. Yorke, Physica 7D (1983) 153.

13



FILMED

7-85

DTIC


